棋牌游戏大全-小游棋牌大厅_百家乐桌布无纺布_百导全讯网321 (中国)·官方网站

Irreducible approximation of Toeplitz operators and matrices

發(fā)布時(shí)間:2023-12-05 點(diǎn)擊次數(shù):

  報(bào)告題目:Irreducible approximation of Toeplitz operators and matrices

  報(bào)告人:朱森教授

  報(bào)告時(shí)間:2023.12.7 14:30-15:30

  報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 104報(bào)告廳

  報(bào)告人簡(jiǎn)介:朱森,吉林大學(xué)數(shù)學(xué)學(xué)院教授,博士生導(dǎo)師. 主持國(guó)家自然科學(xué)基金青年、面上等項(xiàng)目. 近年來(lái)主要從事線性算子的復(fù)對(duì)稱性、隨機(jī)理論等方面的研究,在 J. Funct. Anal., J. London Math. Soc., Math. Ann., Math. Z, Sci. China Math., Trans. AMS等雜志發(fā)表系列論文.

  報(bào)告內(nèi)容簡(jiǎn)介:
  The classification of the reducing subspaces of analytic Toeplitz operators on the classical Hardy space $H^2$ was completed in the 1970s due to work by Cowen and by Thomson. As for the reducing subspaces of non-analytic Toeplitz operators, to the best of our knowledge, there is no result in the literature so far.
  We initiate to describe the reducing subspaces of Toeplitz operators via an approximation approach, showing that in the class of Toeplitz operators with continuous symbols those irreducible ones constitute a dense $G_\delta$. Our result depends on a finite-dimensional approximation result, which asserts that in the class of $n\times n$ Toeplitz matrices those irreducible ones constitute an open dense subset.


奉贤区| 百家乐官网永利娱乐平台| 新锦江百家乐官网赌场娱乐网规则 | 澳门百家乐在线| 葡京娱乐| 百家乐官网赔率计算| 做生意的风水朝向| 大发888娱乐客户端真钱| 百家乐官网是骗人的么| 百家乐官网视频聊天游戏| 百家乐全自动分析软件| 威尼斯人娱乐场首页| 豪博百家乐官网现金网| 网络百家乐软件真假| 做生意摆放什么财神爷| 调兵山市| 百家乐有无技巧| 大发888假冒网站| 百家乐官网翻天电影| 大发娱乐城888| 24葬书-葬法| 讷河市| 大发888娱乐城赢钱| 百家乐官网游戏卡通| 聚宝盆百家乐的玩法技巧和规则| 网上百家乐官网洗码技巧| 莆田棋牌游戏中心| 百家乐现金网平台排行榜| 怎样看百家乐官网牌| 康莱德百家乐的玩法技巧和规则 | 百家乐官网澳门有网站吗| 博彩百家乐官网组选六六组| 188金宝博| 模拟百家乐下| 百家乐赢钱战略| 百家乐官网庄闲最佳打法| 老虎机怎么玩| 百家乐有免费玩| 金榜百家乐官网娱乐城| 二八杠 | 大发扑克官网|